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S. ,NTRODUCTION

1.1 Goals

3 The object of this research is to pursue the question of whether it

is possible to develop a-, intelligent computer system that both understands

3 and writes programs. The research includes high-level methods of specifying

programs, codification of programming knowledge, and implementation of

I working program-writing systems. The domain of programming knowledge

j Iranges from the fundamentals of programming through list processing to

simple searching, sorting, and inductive-inference programs. Much of this

Sknowledge is more-or-less pure programming knowledge, along with such

domain-dependent knowledge as is necessary. A major emphasis is the

I codification of the considerable body of list-processing and fundamental

progrmming knowledge. In the implementation aspect of our research, an

eventual target system is expected to have a deep understanding of

3 prog. amming as demonstrated by its program-writing ability, its line of

reasoning in creating a program, and its ow.. discussion of why it made

I each choice and what factors were involved,

1.2 Progress

I One of our earliest efforts was an exploration of more "human" methods

of pry~gram specification, such as example input-output pairs, program

I traces, and generic examples. In the area of codification of programming

knowledge, we have developed sets of rules for program synthesis that

cover low-level list and register operations, several types of generate

and process paradiyms, and simple searching and sorting programs. We have

.,mplemented 7 differei% programs that do all or part of the job of prograr.

1
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I synthesis. The more recent programs haye beer, moderately successful. In

particular, they can (1) write list-transformation pr,grams, given

... ample input-outpu airs; (2) write low-level list- and register-

manipulation programs; (3) write 3 sorting and permutation programs;

and (4) write a concept-formation program.

1m 1.3 Organization of the Report

The reader should note that material in this progress .eport is

presented roughly chronologically and that zome of our false starts have

been included for historical completeness. Consequently, our later (and

I hopefully more successful) work is presented towards the end of the paper.

3 Some readers might wish to scan the first parts and focus on Sections 4.4

through 4.7.

Section 2 of this report represents our initial explorations into

declarative methods for specifying procedures. These methods include both

I individual and geneiic examples of input-output pairs to which the program

being specified must conform; traces of the input(s), output, and perhaps

intermediate valixes throughout the execution of the program; high-level

I programming operations and concepts expressed in English words and phrases;

and combinations of these. As a result of the conciseness of such program

3 descriptions, they are often incomplete or ambiguous. Some of the methods

-)f Section 2 are utilized in the rur.ing systems discussed in Section 4.

Section 3 is a brief discussion of what we view as one of the most

3 important aspects of research in automatic programming: the codification

of programming knoledge so that it can be used by a s-stem which unYerztrd,

and writes programs. Concrete exam.les of such knowledge are given in

Sction 4 for some of the systems zurrently implemnented.



I Section 4 embodies the history of actual program-understanding

3 systems which have been implemented by our group over the past year and

one half. These systems span a wide range of input-specification types,

3 built-in programming and task-domain knowledge, and target-program

complexity, but tney all have the programming domain of list processing

in covaon. Although the systems are discussed in chronological order

jfor the sake of continuity, the reader should note that our most recent

and continuing efforts involve the final 5 systems [see Sections 4.5-h4.'t].I
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2. METHODS OF PROGRAM SPECIFICATION

One of our goals is to find better ways for people to specify programs.

I A central question is whether or not there exist any methods or languages

that are better than those that currently exist. It is possible that,

say, ALGOL is the best language for specifying a particular algorithm.

3I However, it seems that for certain programs we can find new descriptions

that are easier for people to use. Certainly, very good special-purpose

Slanguages can be designed for particular application areas.
We will present a few methods for specifying list-processing programs.

It is not yet clear which methods are suited to which classes of programs.

i iSome methods considered so far are examined below. Most of these have

evolved from discussions within our group. McCune has contributed the

most recent efforts at analyzing and cataloging them.

In general, our target user is a person familiar with programming and

I the subject domain of the desired program, but not necessarily with the

it [details if that program or the language in which it is to be implemented.

- 1 2.1 Example Input-output Pairs

Grammatical inference and the inference of automata fron, ordered pairs

I representing example input-output behavior have been investigated

I ~ [314.,7,l2,17]. Example input-output pairs can similarly be used to

describe low-level list-transfoxmation algorithms [1l,4).

Consider the program that "flattens" a list. An example of its

-~ behaoiior in as follows:

II°°7 °- °° ° °

= j



input output

3 (A (BC (D) E)) -- (ABC D E)

This example pair is quite simple to write and to most people specifies

the desired effect of the program, but not the detailed operation. Note

that if we add the phrase "remove inner parentheses" to the input-output pair

description, the intent is even clearer Of course, we still don't

I know whether to create a new list or modify the input list unless this,

too, is specified.

Another list transformation that is easily specified by example is

_____output

(A B C D) - ((A B)(A C)(A D)(B C)(B D)(C D))

-which describes the generation of all 2-element combinations from a list.

A simple observation is that several I/0 pairs may be required to

Ispecify a program (actual... a class of equivalent programs) unambiguously.

One disadvantage of this method is that the program inferred by the system

UI. may not be the intended program. Also, examples have to be carefully

P"% chosen. Hopefully the program-writing program will have some model of

human preferences and will not infer, say, the function having the constant

q! output (A B C D E) from the flatten example given above. In cases

Ali

where it is difficult to disambiguate the intended program using only examples,

other information sources could be used. These include programming context

and simple descriptors like "a recursive function, not merely table look-up".

The program-writing program should verify with the user that its choice

of program is what the user intended. One way to do this is to automatically

generate for the user a new I/O pair that disambiguates among tha major

candidates.

...a



I In any program-specification method that requires some inference on

3 the part of the computer, there will be a' chance that the computer will

synthesize the wrong program. This lack of control is especially upsetting

I to good programers. H[owever, high-level specifications are invariably

inexact, which leads to the need for inference to fill in details. More

research on this problem area is required, but any solution would seem to

I require a high degree of 2-way dialog between the user and the system.

j 2.2 Program Traces

Some work has been done on the inference of programs from traces [2].

This method is more complete than example I/O pairs in that it tends to

describe the algorithm used to compute the output, as well as the input-

output relation. Thus the pair

input output
] (3 1 4 2) - (l 2 54)

specifies a sort. But the trace of the input and output

~nputoutput

initially: (3 1 It ) ()
next: (l14 2) (3)
next: (A 2) (1 3)
next: (2) (1 3 4)
finally: () (1 2 5 h)

implies an insertion-sort algorithm, with details omitted.

We would like to emphasize a new aspect of program inference from

traces, namely, the ixtilizatinn nf several -kmowledge sources to Write the

I program. These sources include the subject domain for which the program

is written, a knowledge of what the common operations are, and other
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specifications that are given for the program. The user could supply

jifurther information by annotating the traces to provide disambiguation

or further specification, as is discussed in Section 2.9. An example of

Ladditional specification of the sort program above might be the word

"recursive".

[L 2.3 Generic Examples

Generic examples lie somewhere between example I/0 pairs and formal

Iipredicate-ca?.culus I/O specifications [13,32] in explicitness. The

ellipsis notation is used to specify an indefinite number of elements.

For example, the specification

Binput output

(Z 1 x2 x ... x ) N- (xn X- x-2 ... xl)

[1gives the reverse function. The alternate function may be specified by

Hinput output
(xl x2  x 4x x5 ...)-- (xl x x5 ..

This notation is, of course, ambiguous, and a verification phase would

I have to confirm the hypothesized program.

2.4 Generic Traces

Similarly, the ellipFis notation can be used in a trace. As an

example, here is a generic trace which -pe-i-fc the corabinatins of

elements of a set taken 2 at a time:



I
car(input) cdr(input) output

x, (x2 x x ... ) ((x1 x2) (xl x,)(x Ix h)...)
x x2  (x3 x4 ... ) ((xi x2)(xl x)(x, xO)... (x2 x)(c2 x4) ...

2.5 Graphical Descriptions

i] Pictures of input and output are obviously well suited for depicting

simple list transformations in which the structures are difficult to describe

in linear strings, yet easy to describe in 2 dimensions [191. We have not

investigated any of these methods.

2.6 Conceptual Descriptions

High-level program description is, of course, the most convenient

- specification technique if the right high-level primitives are available.

H In the extreme case we would just give the name (or number) of the desired

program. More interesting cases for automatic-programming stud"ies are

Hthose in which there is some distance from the primitives to the program

description.

T
.. For the domain being considered (list transformations), nice :.onceptual

descriptors (primitives) include "element conserving", "order preserving",

"represents a set", "represents a tree", "represents a graph", "permutation",

"table look-up", etc. These can be embedded in either inherently ambiguous

or unainbiLguous languages (ranging from versions o:C English to unfnbiguous

I high-level, but conventional, programming languages) and can either partially

or completely specify the program. We would like to emphasize partial

3
A
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I descriptions, ambiguous languages, and primitives that are not quite

3 high-level enough to make the task too easy for the system. By combining

several ambiguous partial descriptions with knowledge of the programming

domain, a system may be able to decipher descriptions that humans can

easily produce. (Conventional programming languages that are completely

descriptive and unambiguous, but lacking primitives of a high enough level,

3 are still of interest.)

2.7 Natural-language Descriptions

As used by documentors and describers of algorithms [19), natural

I (English) language mixed with mathematical and programming jargon can be

3 an effective method for communicating an algorithm. Good English-like

program descriptions can be easily understood by humans, although again

it's not clear under what circumstances they are the easiest descriptions

to generate. English descriptions can, of course, describe input-output

I relations or algorithms, be partial or complete, high-level or low-level,

interactive or not, etc. Here is an example of a partial algorithm

specification [20]:

I An exchange sort. If two items are found to be out of
order, they are interchanged. ±his process is repeated3~until no more exchanges are necessary.

We intend to examine the issues of when English is a useful adjunct

in program description and how a programing system might deal with it.

3 Elschlager is studying natural-language descriptions of programs in order

to develop an appropriate internal representation cor thei.. Fr,'u this haz;

come a representation which is primarily relational, but also has

£ 9



I qualification and quantification primitives. Possible inputs into this

f system might be either a limited subset of English or a more rigidly

structured "parenthesized" English. Future work includes relating this

5 internal representation of a program to the programming concepts and

data structures it will use.I
2.8 User-machine Dialog

A simple and useful vehicle for embedding the various methods of

Iprogram specification is conversational interaction or dialog between
the user and the automatic-programming system. Such a style was used by

II Floyd [10] in his suggestion for a system aimed at interactive program

verification and synthesis. With such a system there is a need for a

large amount of programing knowledge of both a domain-specific and

generr.l nature. The system would draw on this knowledge in order to

understand the user's remarks and pose meaningfal questions.

iOne could imagine a conversation beginning with the user's specification

Iof the general program desired and proceeding in a basically top-down

manne,'. As the system needed more precise information, it would ask for

jaI it. Presumebly the user could indicate a preference for a particular

programming decision (e.g., choice of data representation) or possibly a

lack of preference, in which case the system would make its own reasonable

choice. A variety of methods of specification (e.g., examples, traces,

formal specifications, etc.) might play a role in such a conversation.

I This yields a paradigm similar to that of structured programming [6], but

one in which the computer fills in the details.

;typical low-level dialog miht proceed as follows (for readability

the dialog is mostly English):

10
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USER: Please write me a progrant which extracts

information from pairs in an input list.

MACHINE: What will the input be?

USER: The input will consist of 2 parts: an

atom and a list of pairs.

MACHINE: What should the output be?

USER: A list of the other half of the pairs which
contain the input atom.

MACHINE: What do you mean by "the other half ofthe pairs"?

HUSER: Tf the first element of one of the pairs
is the input atom, I want the second
element; if the second element is the
input atom, I want the first element.

MACHINE: What shall be done if one of the pairs
is (x x) , where x is the input atom?

USER: Then the output list should include x

! M.ACHINE: MK I think that' s enoug.

[pause]

MACHINE: Wait a minute. Does the order of the

elements in the output list matter?

4 USER: No, not at all.

MACHINE: Then I will simply use the order in which
the pairs occur in the input list, since
that is the easiest. In this case I could
overwrite the input list. Should I do that,
or would you rather that the list be preserved?

USER: Preserve it.

(pause j

NIACHIfE: D; you want this written as a function
of the 2 input arguments?

USER: Sure, call the function f

I

I . = - , -i -1 ' . -,



MACHlfE: How's this:

f(x, y) - if null(y) then nil else
if x = caarT-then c-ons(cadar(y), f(.., cdr(y))) else
if x = cadar(y)- n cons(caar(y), f(x, cdr(y))) elo'
TTx, cdrCY)) ;

USER: Looks good to me.

The above dialog is at such a low level that it is "ompletely dependent

I uyn the fact that LISP lists are being dealt with, thus requiring the user

to have some familiarity with LISP. Higher-level dialogs of domain-specific

programs can be less representation dependent and can be carried cn in the

Ivocabulary of the particular problem domain.

2.9 Information ilecessary to Complete Ihe Specification of a Program

In completing the specification of a program, we can imagine a

i "checklist" that a program-writing system might have for each type of

3 program it can handle. It might work on completing its checklist by

inference from partial specifications, interactions with the user, context,

j and default conditions. Such a checklist might include terminating

conditions, auxiliary functions, restrictions on inIJt (e.g., whether a

I list has constant or variable length), what data representations are

3 available, etc. Certainly a program-understanding system needs to ask

many questions about the target program. (But not, "What's the first

3 instruction? Now, what's the second? ... ")

I 2.10 A Comparative Example

Let's consider the specification of a simple prograin as a vehicle for

discussion of the merits of various methods of descripttion. 'nider the

I following example -if the association search syntherized in Section 2.8:

AL?



in 1 int 2 output

B ((A B)(B C)(DE)...) -- (A C ... )

I Note that we've incorporated the ellipsis notation of generic examples

i nto an ex&mple input-output pair. Subjectively, this specificati, n sees

not as thorough as we might wish. Can input 1 be non-atomic? What if

f (B B) occurs in input 2? What if an element of input 2 is atomic? Etc.

As the complexity of the transformation increases, example input-output

Ipairs begin to require more inference to determine the intended transformations.
One way out is to clarify the intended function by describing more elementary

relations between input and output e ements, namely, "The letters A and C

Iare in the output because they occur in the second input paired with B

(the first input)". If we allow a higher-level concept, it is even easier

to describe: "a commutative LISP assoc operation". This phrase
3.

describes the function fairly clearly (to a LISP programmer). The added

.8 description, "order preserving", explains why C follows A in the output,

but a reasonable program should assume (azrd te-t) order preservation in the

absence of other information. Obviously the conceptusl descriptions alone,

without the example, do not clearly determine the intended program.

Together they do a reasonable job.

As another more explicit technique, r-cCune and Lenat have suggested

describing the lower-level relations for the above example graphically

as, say,

IV"

-I



implies

member

B 7A ((B) (BC) (D E) (A C -.. (

Tesame

same.

implies

This scheme clarifies why each element of the output is where it is

and from where in the input it came.

- Of course, a partial or even complete, but precise description can

be given in predicate calculus [13,32]. Here is one possibility:I
(V v, w, x, y, z) [input(x, y) A Output(z) A atom(x)

A list(y) A list(z) A sublist(w, y) A length(w, 2)
A member(x, w) A member(v, w) A (x j v v Yu[member(u, w) -o u = v])]-member(v, z)

(Y ty u, v, w, x. y, z) input(x, y) A output(z) A liGt(y)
A list(z) A member(v, z) A member(w, z) A sublist(t, y)
A sublist(u, y) A member(v, t) A member(w, u)
A before(t, u, y)] -befgr(v, w, z)

(where before(t, u, y) means element t occurs before element u in

list y ).I
14.

IJ



At this la's level the above form&l description, which may or may not

be correct, appears to be at least as difficult to write correctly as the

program itself. The program (in an imiaginary version of Meta-LISP) is

I merely

U f(x, y) i f nully) then nil else
i~ meber., car(y)) thn

appevij(delete(x, car(y)), f(x, cdr(y))) else

f(x, cdr(y))-

[I The low-level LISP progrwa. (which doesn't make use of' the functions

member , append , and delete ) is just

f(x, y) if null(y) then nil else
if x =caiFTy hen Tons(cadar(y), f(x, cdr(y))) else
if x= cadar~y) then cons(caar(y), f(x, cdr(y))) else
?Cx, cdr(y));

lie

As another alternative, a program trace is a fair way to describe~

the program:

input 1. cair(input 2) output

IB (A B) (A)
B (B C) (A C)
B (D E) (A C)

1.5



3. CODIFICATION OF PROGRAMMING M1OWLEDGEU
The easy part of codifying programming knowledge is the now mure-or-lesv

I conventional formal specification of the semantics of each operation in

5 one's programming language [9, 15, 23]. The more interesting aspect is

the concrete specification of high-level programming constructs (e.g., a

loop with an exit), and those programming methods that are used in the

process of designing a program, bul, never appear explicitly in the program.

I An example is the detailed specification of sufficient methods for performing

a generate-and-test operation on an implicit representation of a set.

Newell [24] has presented a fairly high-level (non-programmable) description

of 5 vommon artificiil-intelligence probler.-solving methods, including

genermte and test, heuristic search, hill clir.bing, match, and induction.

I Much o, the wor% in s';ructured programming [6] has been aimed at

explicating such programming methodology, but has generally been at too

high a level for implementation, being aimed at human programmers. We

J have begun to codify and embed this type of knowledge in 2 of our systems

[see Sectiont 4.6 ad h-.7].

if How big a body of knowledge are we interested in, and how much detail

is needed? Our _rude preliminary estimate is that something like a few

thouzand "facts" (,.ny convenient chunks of knowledge, such as production

rules, axioms, or goal statements) could enable a program to understand

simple list-;rocessing programs. We have generated a proposed set of

i- facts necessary for a program-understanding system to understand very

simple insertion- ard selection-sort programs. I),- to 20D facts seem

I adequate, vIthout counting either the semantics of LISP cr any efficiency

I or optimization knowledge. Including these other knowledre S.-urces would



!'I
bring us to several hundred. Manna and Waldinger's experience [22] with

the domain of pattern matching indicates that about 75 facts are sufficient

to enable the construction of a unification algorithm (leaving out

efficiency, programming-language semantics, and high-level program-

construction concepts).

Such estimates, crude as they are, give us an idea of how smart a

program-understanding system might become in the next few years; that is,

we can expect a system to deeply understand a very small set of programs.

Our plans are to finish the characterization of simple sorting and

- then to consider simple tree searching, table look-up, and set operations.

At the same time we will increase our emphasis on the automatic selection

of representations. These areas all involve more-or-less "general"

programming knowledge and are not too domain specific. Our first more

domain-specific area under attack is that of concept-formation programs

(18, 54], a class of inductive-inference programs that encompasses enough

general programming knowledge to be interesting for that reason. We are

j currently defining a set of increasingly complex concept-formation

programs to pace our efforts. PUP5 [see Section 4.61 indicates that there

are about 75 units of knowledge necessary to write a concept-formatik'.,

program, where each unit contains about a dozen facts.

It would be nice to know the size of the body that constitute, the

j "core" of programming mnowledge. As yet, we can only guess. Finding the

knowledge is still a more-or-less linear process; that is, to add a new

5 capability to an understandinr system requires about as much Ltme and

effort as it took to add the previous capability. We are beginning to

find some comonality in the utilization of previously codified knowledge,

I
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but it's too ei~'ly yet to make any claims of great insight. However,

3 we do have a fa~ legree of faith that there is a subject-independent

core that we will slowly extiact and refine.
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I 4. IMPLEMeTATION OF PROGRAM-UDERSTADING SYSTEMS

I|
For the sake of historical completeness, we will discuus 3 early

implementations that are of limited significance before discussing our

later, more successful systems. Perhaps the main conclusion to be drawn

In from these is that small efforts seem inadequate for serious progress in

program-understanding systems. Good programming systems will be very

large and complex and will take many man-years of work.

4.1 Schema Instantiation to Fit Example Input-output Pairs

The first running system in our group was Lenat's INi, which was

implemented in MLISP [30]. It takes as input several example input-output

list pairs and produces as output LISP programs. The idea is simple:

most elementary programs in the class of interest have 1 or 2 termination

conditions followed by a recursive call. The structure of such a program

i can be given by a few high-level schemata.

The system infers the number and type of arguments by examining the

example input-output pairs. From the number of arguments either the

1-input schema or the 2-input schema is selected. The 1-input schema is

i f(x)
I if fl(x) = CI then f2(x) else [line 11

if f.(x) = c2 then fh(x) else [line 2]

If (f6(f7(x)), (x))); [line :1

where f through f9 are functions and c1 and c2 are constants,

all to be determined later. Lines I and 2 correspond to termination

conditions, and line 5 corresponds to a recursive call.
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The user is asked if the function is recursive. (If it is not,

I line 5 is not used.) The default condition is to assume a recursive

function, but no attempt is made to guess that the function is recursive.

The automatic program writer next determines, again by asking, whether

j there are 1 or 2 terminating conditions (i.e., line 1 only or both lines

1 and 2) and whether the user wants to suggest either the test or the

value for lines 1 or 2.

Whatever pieces are not supplied by the user are filled in by a

constrained search process that also fills in the functions in line 5.

The search proceeds as follows. First, an ordered set of candidates is

formed for each subfunction and constant. The user can give advice in the

form of suggested subfuxctions that are likely to occur. A second

information source is the type (atom, list, or number) of each argument.

These fLctors are combined, using a rating table containing the probability

of each known function appearing in a particular schema position, to yield

a final ordering. Then the candidate instances of the schema are generated

one by one, in accordance with the orderings of the subfuncticns.

Several tricks prune the search space. A function is not applied to

6the wrong number or type of arguments. To check this the instantiated

T schema is run on the examples, and checking occurs at every step of

execution. Infinite recursions are detected and prevented. "Infinity"

is a parameter set in advance, usually to a number between 17 and 10'.

The function being defined may only occur in line 3, the recursion step,

I and its argments in the recursive call cannot be the same arguments it

receives in the original call. Some check should be made that the

argumentS are somehow moving toward the termination form, but actually any

20



perceived change is allowed. Several special subfunctions such as the

3 identity function and a projection (or selection) function, are provided

to enable the desired program to be forced into one of the 2 given

procrustean beds.

The program is known to have generated at least 8 correct programs,

3 but run out of time on most other attempts. Among the programs INi

wrote are

function name function operation

sub2 subtract 2 from the (numeric) argument
[from 2 examples: 2 -0 and 7s 5]

last produce a I-element list containing only
the last element of the input list
(from 2 examples: (A B) - (B) and
(A B C D E) --. + (E) ]

reverse reverse a list [from 1 example:
(ABC D E) -- (ED C BA)]

Fibonacci the obvious [from 3 examples: 1 - 1
a6-8, and 7-131

factorial the obvious [from 2 examples: 1 - 1

and '4 -2'4]
insert insert a number into its proper place in

an ordered list of numbers
(from 3 examples: 2, (13 8) . (12 3 8);
2, (8) o (2 8) ; and
7, (1 5) ) (1 5 7) i

sort sort a list of numbers, given insert as

a primitive function
(from 4 examples: (2 3) - 9 (2 5)
(3 2) (2 3)
(17 6 1) (l4 6 7) , and
(8 1 2 5 3 9) _. (12 3 5 8 9) 1

flatten change a tree into a single-level list of
the atoms in the tree [from 1 example:
(A (B C (D E)) F) - (A B C D E F) ]

This approach appeared to have limited potential, so no controlled

experiments were ran. The main disadvantage was that the program had a

limited mod2l of its task and little programming knowledge, so it

consequently engaged in large searches.

21
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I.2 Sequence-extrapolator Writer

3 This was an INTERLISP [311 program by Lenat. The question was

whether it is possible to write a highly specialized program writer that

I produces programs for a given sub-area of inductive iference, in this

case sequence extrapolation [25, 29]. Other specialized program-writing

j programs, like compilers and compiler-compilers, have been around for

a while. This new task turned out to be easy.

The program begins with a schema for a generalized sequence-

I extrapolation program consisting of 5 subparts. The user describes, via

a dialog directed by a decision tree, which capabilities are to be

I included for each subpart. (Not all choices are independent, however.)

The system then includes the appropriate pieces of program or data that

meet this description. For example, for the subpart of known sequences,

j the user indicates which sequences should be immediately recognizable by

exact match.

I Not much was learned, except that it is possible to write a highly

specialized program writer for this domain. We can guess that it would be

easy to turn out specialist program writers for other simple, well-structured

3 domains. The system had little of the character of what we call an

understanding system.

I
h.5 Ellipsis Translator

This was a small study and INTERLISP program by Shaw designed to

translate a class of ambiguous generic examples into a list of candidate

Iunambiguous internal representations. For example, the program translates

I (x 2 4- x, + ... + X) into the 2 unambiguous interpretations
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x and x.
1< i < n/2 12i l< < 1 2 n 2

I (although the 2 interpretations are not represented internally in a form

isomorphic to the above). The experimental program was not pushed, so it

never left the nearly debugged stage. However, there are a few comments

and observations we can make.

1The notation seems to be useful, and the intent of the user is often

easy to guess by straightforward techniques. First, observe that finding

an interpretation reduces to sequence extrapolation on the indices of the

variables. Sequence-extra:polation techniques [25, 29), includi"G successive

differences, successive quotients, and tests for common sequences, have

allowed the construction of relatively powerful sequence extrapolators

that behave well and usually produce the desired interpretation, although

a non-cooperative user can often evoke a false interpretation. A more

serious problem is that of communicating to a cooperative user the

algorithm used to interpret the ellipsis notation and either verifying

that the first candidate is the intended interpretation or else finding

it by some interactive procedure.

The internal representation of the meaning does not appear to be a

T problem, and good ones shald fall out naturally when an ellipsis-

translating mechanism is incorporated into a larger program-understanding

system.

Am ideal system should, of course, be forgiving. For example, it

I should produce the same interpretation ftor the following 4 styles:il
1" 2



1 2 - 1 n _ __-~

I (x1 +x 2 +x + .+ x

Jn3 (X1 
+ x 2 + x +... x )

(x 1 + X2 + x ... + x)

I(X + x + x xn)

5 If the user provides a meaningfully subscripted last element, that information

should be used. For example, in (x2 x4 ... x,,,  the last element shouldU
resolve the ambiguity in the sequence beginning 2, 4, .... Our ideal

3 system should also handle interleaved sequences (say, from different

sources), such as (x 1 Y2 x5 y4 ... ) ; specified intermediate elements,

I such as (x I x, ... x2 i 1 ... ) ; deleted elements, perhaps represented

as (x x2 ... x n) or in other ways; and various operators, such

as +, - , etc.

Waldinger has suggested that a more powerful induction mechanism be

used to allow "formula extrapolation", e.g., to handle examples such as

J (A, B, AA, AB, BA, BB, ... ) Such a mechanism could be of use in

psecifying more complex, but frequently used, enumeration algorithms.

Fusaoka I11] has implemented an embryonic formula extrapolator.

4.4 Our Simplest Program-understanding Program

I The next program showed some rudimentary program-understanding behavior.

It dealt with simple list manipulation, assignment operations, and

I arithmetic. The 2 versions of the program were Lenat's a JPl and a

I revised version, PJ12, by Steinberg. Both versions of PJP were written

in 0LISP [26] (the successor to Q)Alt [271) and I1TERLISP.

I



I
The specification of the program to be written is basically a

3 formal input-output relation. The program is structured around QLISP

goal statements, which specify both the desired state and an "apply"

I list of subprograms that may be able to achieve that state. A subprogram

5 may achieve the goal state directly or may decompose the goal into

subgoals and use goal statements to achieve these. We'll describe

several of the tasks RJP accomplished, along with a description of the

stored facts used in each case.

4.4.1 Interchange of Elements This is a simple problem,

3 similar to one solved by Simon's heuristic Compiler [28]. The problem

statement isI
initial state final state

contents(x) = a contents(x) = b
contents(y) = b contents(y) = a

The initial state is assumed and the final state taken as the goal.

IOne of the programs on the apply list decomposes goals of the form a A 3

j into the separate conjuncts and uses goal statements to attain first one,

then the other, in a more-or-less depth-first manner.

3 The program that handles the subgoal contents(x) = b sees that

contents(y) = b is true and so adds x - y to the program being written.

I It also adds a comment " x previously contained a " at that point in the

program and updates the world model to say that contents(x) = b now holds.

Next, this same program is given the subgoal contents(y) = a and finds

3 that a no longer exists, so it looks back in the program to find where a

was destroyed. It finds the comment " x previously contained a " and so

2



patches the program to save a in a temporary variable before it is -

3 destroyed. The program now looks like

begin A____

temp - x;
x - y; comment x previously contained a ;

Now a exists in temp ; so the program can achieve contents(y) a by

y - temp; comment y previously contained b ; - -

end;

The interesting issue here is whether to look ahead when a is

destroyed and predict that it will be needed again, or to go back and I
3 patch if the need is discovered. In this case patching was much easier

than predicting, largely because a comment was made in order to facilitate

f any needed patching. (Far better programmers than RJP use many comments

for just that purpose.)

4.4.2 3-element Sort This problem, sorting the contents of 3 cells

without using recursion or iteration, is non-trivial even for humans.

3 Experienced programmers can take several minutes and often come up with

incorrect programs. Formally, the problem is

initial state final state

contents(x) = a contents(x) < contents(y)
contents(y) = b contents(y) R contents(z)
contents(z) = c contents of x , y , and z are, in3 some order, a , b , and c

3 No information is given about the ordering of a , b , and c . The

third conjunct of the goal is presently handled by a kludge: nothing
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PJP knows how to do in achieving the rest of the goal changes this

condition. Thus the goal PUP gets is actually just

contents(x) < contents(y) A contents(y) < contents(z)

ST e basic method is to use case analysis, which is adequate (although

a more clever approach is possible). The AND handler begins by decomposing

the main goal into its 2 subgoals. To achieve contents(x) <contents(y)

JR)P knows to try 2 things:

(i) Is contents(x) <contents(y) already true? RJP can
prove that it is true if it has been explicitly
- te o since PUP knows that < is transitive,
f there -c a simple transitivity-chain such that

cntents() = a < ... < 7 z contents(y) • InLi either case, if - ontents(K) < contents(y) is
already true, PUP is done. -

(2) Is contentas(y) < contents(x) ? ,RIJP can know this too
by having it explicitly stated or from a transitivity
chain. PLP also knows that ,(a <3) <a , so
that if Vt knows -,(contents(x) <-contents~y)) , then
i-x can deduce contents(y) < contents(x) • In any

case, if it decides contenls(y) < contents(x) is
true, RJP interchanges x and y . To do this RIJP

calls itself recursively, giving itself the interchange
problem discussed above in Section 4.4.1. (Some future
version of RIP should probably save some information
about each problem it solves, so that when it is given
another similar problem it has an easier time. At

present, however, PUP completely redoes the interchange.)
After the interchange, PP interchanges everything it
knows about x and y that depends on their contents.
That is, every fact that refers to the contents of x
is modified to refer to the contents of y and vice
versa.

Unfortunately, from the initial state none of the relevant ordering

information is kniown, so the goal of contents(x) _< contents(y) fails

to be achieved and. the AHD hraZiTdler fails. (A smarter program might have

first noticed that no ordering information was given about a , b ,

and c , and not attempted either of the above steps.)
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Failure of the AND handler causes the goal-statement mechanism to

try further programs on the apply list. One of these is a case-analysis

handler. This program picks one of the subgoals, say

I conents(x) <c ontents(y) , and constructs a program of the forr

if x < y then subprogram, else subprogram2 ;

We note that the implicit assumption here that the < predicate is

computable should be made explicit. A smarter system might recognize

this program as a sort program and go on to produce a nice algorithm.

To find subprogram1 , contents(x) _contents(y) is assumed and

the entire goal retried. Again the AND handler fails. (Although the

eu first subgoal succeeds since it is assumed, the second subgoal,

contents(y) contents(z) , fails.) Again we enter the case-analysis

handler. This time since the first subgoal is true (by assumption), it

II will not be picked; so the second subgoal in picked. By now, the first

part of the program being constructed looks like

if 7. <y then

if y < z then

The entire goal is again retried. Since both subgoals are assumed, the

A1D handler succeeds this time. and this case is done.

I A point to note is that as each subgoal of the AND goal is achieved,

I it is added to a list of "protected" facts. After each operation this

list is checked to see that none of the facts on it has been altered.

If any have, an immediate attempt is made to restore them. This can,

of course, lead to infinite loops in which restoring one alterr another,



!I'
I restoring that alters the first, ad infinitum. To prevent this, at

3 some arbitrary level of restoring within restoring, a cutoff is madc

and failure reported. The importance of the process of restoring

-| protected facts will be shown shortly.

Now we do the else part of the innermost if. To do this the

assumption contents(y) < contents(z) is removed, and the assumption

-,(contents(y) < contents(z)) is made. Then the whole goal is retried.

The first subgoal, still assumed, succeeds and is added to the protected

list. The second subgoal is tried, and since contents(z) < contents(y)

now holds, y and z are interchanged. A side effect of this

interchange is to modify the fact contents(x) < contents(y) to be

Icontents(x) _< contents(z) .

After the interchange the protection list is checked, and because of

the interchange PUP no longer has the fact contents(x) < contents(y )

So an attempt is made to restore that condition. As before, direct methods

I fail, and the case-analysis handler is invoked. As before, a conditional

j statement is added to the program, and the true and false branches are

written by assuming the truth and falsehood, respectively, of the

j condition. The true case results in the null program, and the false

case results in an interchange. The attempt to restore

contents(x) <contents(y) succeeds, so the else part of the innermost

J if succeeds and thus the whole Innermost if does too. The progrsm now

looks like this (without comments):In
|1
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U if x < y then
begin

I if y < z then else
begin
temp1 - y;

I y -z;z -temPl;

if x < y then else

x y;y temp
2

end
end

end
else
subprogram2;

Finally subprogram2  is written. All assumptions and deductions

specific to the process of writing subprogram 1  are removed, and

S-i(contents(x) < contents(y)) is assumed. An interchange is needed to

establish the first subgoal, but otherwise the process is similar to that

of writing subprogram1 • The final program is

ii
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if x < y then

I if y < z then else
begin
tempi - y;! Z;3 ~y.-z;
z -templ;

if x < y then else

temP2 - x;

y - temp2
end

e endend
else

temp, - x;

y temp3 ;

if y < z then else
begin
temp4 - y;

y -;

z temp4;

3if x <y then else

temp5 - x;

x Y;
y -temPS

end.

end; 
end

5 .4.3 Integer Square Root In this example the desired program

should find L/J , the floor of the square root of input x - This

task was chosen to coincide with Manna's tutorial on automatic

programming [21], which compared the abilities of existing systems to

synthesize or verify such a program. PUP's performance was gained by
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I sacrificing formal methods -- and the associated formal guarantees.

I PUP has just the right knowledge about numeric functions, number

systems, ordering, maxima and minima, searching, and the real square-root

function to make the problem interesting yet doable. For example, JUP

does not know any program which directly compu:es the square root of x

£ However, it does know how to test if an input is equal. to the square root

of x , by comparing the square of the input to x . And PUP does have a

program to compute the square of a number: multiply it by itself.

Let us investigate the dialog now. The user asks for the integer

square root of some number, say isqrt(82) . Since iP doesn't recognize

the function isqrt , it assumes the user either made a typographical

error or wants RPJ to write a new function. The user settles that

question in favor of the latter alternative, and PUP notices that there

is 1 numeric argument. The knowledge of numeric functions is sufficient

to realize that the domain and range of the function should be pinpointed

Iif possible. The user indicates that both domain and range are the

natural numbers. RUP now picks names for the input and output variables,

say x and y , respectively, and asks the user to describe the function

in terms .)f these variables. The user replies with

isqrt(x) - max y such that y < square root(x);

RIP first considers whether or not the condition y < square root(x)

is directly testable given x and y , i.e., whether RUP already has a

program which can do it. Knowledge of the < relation says that the

_ test can be done if and only if each side is computable. We trivially

have the left side, given x and y • But PUP doesn't have an algoritmj

I to compute square root(x) , so we must look deeper for the right side.
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Knowledge of inequalities says to fix this up by finding an inverse

0 function of square-root , say i , and by replacing the old inequality

by i(y) < x . A warning note says that such an inverse must be computable

U(and in addition both the inverse and the original function must be

jjmonotone); otherwise, we're no better off than before. The main fact

about squareroot is that its inverse is achieved by squaring. Both

1] the square-root and square functions have tags indicating monotonicity.

Also, square is known to be computable, so the problem statemenu is now

- reformulated as

L isqrt(x) - max y such that square(y) < x;

r The second problem is whether an algorithm is already known which

computes the maximum element in the range of a given predicate. ra.owledge

about max includes only 1 algorithm: start by choosing the upper bound

L iof the range and then iterate, decrementing the candidate each time, until

the predicate is satisfied. Knowledge of the natural numbers says that an

upper bound does not exist, so this straightforward method won't work.

{j Fortunately, max knows a transformation of itself when the predicate

is monotone and the range is a segment of the integers:

max y such that p(y) becomes min y such that -np(y + 1) • Both

the conditions are verified in our case, so the change is tentatively

made, and the problem statement becomes

isqrt(x) - min y such that -n(square(y + 1) < x);

I (Notice that PUP implicitly assumes that the negation of a computable

predicate is computable. This should probably be made explicit.) Knowledge



U~ of negation allows the replacement of <,< by > at this point, and

3i we get

I isqrt(x) - in y such that square(y + 1) > x; f
-i Now algorithms for computing min are examined. The only one says

to start at the lower bound of the range and repeatedly increment untOV

3 the predicate is satisfied. Knowledge of natural numbers informs us that

a lower bound is 0 • PUP converts this to the final code:

isqrt(x) -isqrt 1 (0, X);

isqrtl(y, x) - if square(y + 1) > x then y else isnrtl(y + 1, :);

URJP enters the program in its records, recalls the original request

I for isqrt(82) , and runs the new program on it.

Notice the flavor of PUP's operation: locating relevant information,

5i which either provides some of the final code or points to more information

which is needed. It is the structuring of this knowledge which beats the

I combinatorial explosion of searching for relevant facts.

I I4.5 Examples Program

This program, called EXAMPLE, infers recursive LISP functions from

single example input-output pairs. The program was written in INTERLISP

by Shaw and later revised by William Swartout. The inductive inference

of functions from example I/0 pairs has also been explored by

SJ. C. R. Licklider [1] and Hardy [14].
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As a typical problem solved by EXAMPLE, given the example I/0 pair !I

(ABCD (DDCC B A

it synthesizes the "reverse and double" function

f(x) if null(x) then nil elseapendC f(c -'Nx) , 3iscax), ax);

EXAMPLE can infer a class of functions which can be approximately

fcharacterized as simple list-to-list transformations. A somewhat more

precise characterization of the class is that each function recurs along

an input list (or lists) and produces some part of the output (possibly

empty) for each step of the recursion. These pieces of the output are

assembled into the output list without any reordering (with the possible

exception of completely reversing the output). At each step of thei

recursion, a similar recursive subfunction can be used to produce that

step's portion of the output. There can be several input arguments, and

the function written can be recursive in any number of arguments.

As an example, consider the I/0 pair

input output

(A B C D) -- ((A B)(A C)(A D)(B C)(B D)(C D))

1 2 3

The output is produced in 3 steps as indicated. A recursive subfunction

produces the sublists (1, 2, and . shown above) in successive steps, and

;5



I
the main function appends them together. EXAMPLE can synthesize this

3[unction and variations, such as having the output reversed or the same

output but with each sublist reversed.

i The program works as follows. Consider the synthesis of the function

g discussed above. Call it f • First EXAMPLE dicides how much of the

output is produced in the firb. step of the recuaton (referred to as the

II recursive head). Thus, in -he example above, it decides that the first

sublist (A B)(A C)(A D) is produced in the first step and is the recursive

IIhead. (Tb heuristic by which it decides this is interesting and is

1discussed later.) Next it sets up the subproblem of synthesizing the

code that produces the head. This can be thought of as specifying a

f subfunction, although in-line code may be used if no recursion is necessary.

In our example a recursive subfunction, call it fl ' is required. First

the arguments of f are selected. In this case EXAMPLE chooses 2

arguments for fl , car of the input, A , and cdr of the input,

(B C D) • Obviously f, just lists car of the input with each of the

U elements of the cdr . After the inputs are set up, the subfunction is

written in the same manner as the main function, by a recursive call to

EXAPLE. Returning to the synthesis of the main function, there are 3

remaining steps: (1) the terminating conditions are selected;
Of (2) the results from each recrsive step are joined properly., using,

7A either cons or append ; and (3) the recursive call of the main

function is formed. The recursive call can be on the cdr , cddr ,

I cdddr , etc. For example, in (A B C D E F) o- (A C E) the recursive

call is on the cddr of the input.

I
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The program written for (A B C D) -- 4 ((A B)(A C)(A D)(B C)(B D)(C D))

3 f(x) - if null(x) then nil else
if null(cdr3J then-il else
append(fl(car(x), cdr(x)), fcdr(x)));

fl(y, z) - if null(z) then nil else

cons(list(y7-ir(z))-f 1 (y, cdr(z)));

EXAMPLE is fairly complex, but we will describe one interesting part,

namely the heuristic that decides where to break the output list into the

frecursive head and the rest. The output list is scanned left to right (and

possibly right to left if necessary), looking for a simple progression.

IWhen a large change is encountered, this point is proposed as the break.

In our example, (A B C D) --- + ((A B)(A C)(A D)(B C)(B D)(C D)) , the

pattern (A nextinput) , where nextinput signifies the successive

elements in the input past A (i.e., B , C , and D ), is discoveredI
to match the first 3 elements of the output but not (B C) , so the break

oI occurs before (B C) • This heuristic, along with many others, such as

determining when to write a subfunction and the number of arguments for

a subfunction, works fairly well.

I The following examples are ones for which a reasonable program was

automatically generated. Some 1-input examples areI_
input output

I (A B C D) - (D C B A)
(A B C) -- (A A B BC C)
(A B C D) - (D D C C B B A A)
(AABC D EF) (AC E)
ABC D E - -V (CA)

(ABC D E F) - (BD F)
(A B C D) - ((A) (B) (C) (D))I (A B C D) - ((A B)(A C)(A D)(B C)(B D)(C D))
(A B C D) - (ABC D BCDCDD)
(A BOCD) -p (DC BAD C B DC D)

BC D E F) (B ADC FE)
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o Some 2-input examples are

[I~ 1~t input 2 output

FN (A BC D) (-WA(F )F C( N
(A BC) (D EF) -p (A DB E CF)
(A BC) (D E) -. (A DBDC DA B BE CE)
(A BC) (D E) -. e ((A D)(A E)(B Dl()( D)J )

(A BC) (D EF) ~ ( (A D) (B E) (C M)

H The limitations of the sys-ten, are

LI(1) On *,- the poiaition of an elemntl &-id not it-W identi-ty,
As considered In deciding what to do wIL h it - Thus a
reverse program can be written, but a ucrt cannot.

(2) on the input, only top-level list recursions, as onpposed
to tree rancursions, are attempted. Thus -the flatten
function ^. (B (C (D E) F) G)--, (A BC DF IN;FG
is not possible.

(5) The ursan-ization of the program na1~es extension into new
areas reasonably difficult. We pDi to reorganize the
program and to add cleverer, dcoain-specific facts to
increase its power.

§,yntht s )f Darge ndutive-infc-rence Progrwms

- Our next system, RJP5 by Lenatp represents an attempt at the synthesis

of larger, more domain-specifie pr'ograms. Thie system was designed to

write concept -formation programs, a class of prograris which inductively

infer the definition of a concerot from a number of instances of that

concept [18]. The original target program to be synthesized

semi-automatically was SPT, a small version of Winston's concept-formation

ro ra [-awthu t fancy graph-matching algorithm, wrte byr

Peter Gadwa at Stanford University. SPOT was specifically designed tobeasmleI-a
be a simle (-pae), yet still interesting program. During the course
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of the design o' RJP5, the target program evolved into a somewhat

different program.

RIP5 is still only an experimental vehicle, but it has proved

i jmoderately successful. It has indeed written a concept-formation program

similar to the intended one, although augmented by self-documentation.

I ~JP5 is being revised to write a wider class of inductive-inference

I programs. The next target program is a simple grammatical-inference

program, upon which work should be completed shortly.

I Although the system is written entirely in INTERLISP, many popular

Al-language features [5] (e.g., pattern matching, assertions, goal

I direction, apply teams, backtracking, special data types, demons, etc.)

were hand coded expressly for this system. The entire 100 pages of code

is organized as an interacting community of small units, called beings.

Although complex, the structure of each being is the same: a set of answers

to about 30 fixed questions. These questions, called the being parts

represent "everything you always wanted to know about a small program".

Neither the exact set chosen nor the number 30 is very important; the

approximate size of the set is relevant to automatic programming, however.

Each being part is itself a little program which knows what the 30 questions

are and which may ask any being any question it wants to. Since some

beings must write target code, we choose to have each being x write all

code similar to x . For example, the sort being contains a costly

"big switch" hooked to various sorting algorithms, but the code it writes

T in any specific instance will be a tailor-written implementation of a

particular sort algorithm.

I Although PUP5 insists on doing structured programming (hence uses

something like macro expansion), its control structure employs feed forward,I
59V
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feedback, backtracking, and a contextual assertion base. One bit of

inherent philosophy is that the system should defer making all decisions

as long as possible. We hope that by this deferral, along with careful

I record keeping, we can eliminate most of the carelessness "bugs" that

typically arise in humans as a result of brain-hardware limitations. This

is in contrast to earlier versions of RJP [see Section 4.4], which viewed

debugging as the predominant part of programming. Thus, IJP5 rarely

believes it is finished if in fact it has overlooked some details.

LI We now present (most of) the current parts of a being:

name description

identity how the being is referenced in English ILI sentences
arguments which arguments are required and which
au nccare optional 4

iargumentcheck predicate which examines each argument
for suitability

evaluatearguments which arguments of the being and in the
code generated by the being should
be evaluated

what brief summary of what the being does
why justification for the being's existence:

why it is called
how summary of the method(s) used by the

being to do its thing
effects postconditions which will be true afterI . calling the being

when factors and weights telling how apropos
the being is right now

meta-code body of the code, but with uninstantiated
subparts

comments aid to filling in the meta code
requisites what must be actively satified just

before (prerequisites), during
(corequisites), and Just after
(postrequisites) the being is

demons which demons should be enabled during
the being's execution

affects which other beings might be called by _
this being j
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1 name description

complexity vector describing such features as
recursiveness, overall cost,
chance of failing, transparency
to user, etc.

specializations what must be known to write a streamlined
version of this being

alternatives equivalent beings in case this onedoesn't work

generalizations more general beings in case none of the
alternative beings works

* predicate what type of veslues the being returns
data-structure if being is a data structure, how it

is initialized and accessed, how
elements are inserted and deleted

encodable description of the flow of control in
writing a specialized new being

inhibit current_ enable/inhibit mechanism for demons
demons

formchanging where in the being tree this being can
directly return toI

Although each being has about 30 answers, each of which might contain

several facts, only about 10 facts from any given being are actually

3 employed during the course of the program-writing dialog. A typical

programming being is obtainusableinformation . Its when being part
t says that calling this being is generally undesirable, but may be the

only reasonable course to follow if there exists new information which is

not directly usable. Its how being -part says to choose (creatinga

non-deterministic backtrack point) from among these: translate, get

totally new raw information, extract a small subset of existing raw

1 information to concentrate upon, or analyze 'the implications of a small

set of existing raw information. A typical domain-specific being is

I partition_a_domain . It specializations being part says to find out

3 whether the partition is partial or total, whether it is weak or strong,

and whether it is built by repeatedly accepting (clement, class name)
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pairs and/or accepting an element (then guessing and verifying its

I class name) and/or accepting a class name (then guessing and verifying

its element(s)).

I The dialog involved in a PUP5 run is carried on in a miniscule

subset of English. Since it encompasses precisely the sentences which

the user wants to say, the dialog gives the illusion of being unconstrained.

f However, the term "the user" is not generic as there has only been 1 user

so far. The interaction system works by each being recognizing and

5 processing phrases referring to it. The dialog for synthesizing the

concept-formation program takes several hours of console time. Much

of the interaction is unnecessary: RJP5 asks the user to name things

I which are never referenced again. This annoyance is being worked on.

A promising sign of programming-knowledge convergence is that out of

67 programming beings 50 are used by RJP5 during the course of writing

both of the target programs (concept formation and grammatical inference).

Future plans for RJP5 work include studying the various types of knowledge

j needed for programming, inductive inference, and specific target programs.

This will (hopefully) be done by extending RJP5 to handle more and bigger

j tasks.

I 4.7 Sorting

During the past year, Green and Barstow have attempted to isolate

and codify those "facts" of programming knowledge which are necessary for

a system which can understand and write simple iterative sorting programs.

To keep the working domain small, such techniques as recursion and exchange
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I sorting (e.g., bubble sort) and such fast algorithms as quicksort [161

and heapsort [8, 331 were explicitly excluded from consideration. In the

course of this attempt, it became apparent that many concepts were

I involved and needed to be analyzed. The present set of facts is a list

of 100 rules which deal with sorting and permutations, generators for

explicitly given sets, set constructors, and several types of generate-

and-test methods. The rules allow for either array or list representations

of sets. There are at present no rules regarding efficiency considerations

5 Ior formal verification of correctness. This we consider a shortcoming,

and Elaine Kant has recently begun studying the addition of rules for

3optimization.
One interesting aspect of our list of rules is that it covers a wide

I range of levels. As an example of the range covered, there are rules

Ii dealing with the choice between selection and insertion sorts, with

state-saving schemata for generators, with the choice of variable names,

and with the addition of elements to the fronyt of a list. One initial

goal of our work was to have each rule be relatively simple and explicit;

* we feel that we have been moderately successful in this regard. Thus,

these rules provide a knowledge base for a program-writing system, and it

is the interaction of these rules which provides the foundation for the

3 system's "understanding" of sort programs.

The rules have been 'ganized in a goal/subgoal fashion, with the

I capabilities of disjunctive and sequential subgoals and subgoaling by

3 cases. A preliminary implementation of a system based upon these rules

has been completed. Each rule has been written as an 11TERLISP function.

3 The control system consists of several other functions which describe

the efforts of the system as it writes a program, ask for choices at

I
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OR-rule junctures, and provide limited additional explanatory information

on request (e.g., a why fanction to exp ai the purpose of a section of

the final program). The traces tend to be overly verbose, but confirm

Iour belief that the rules can form the basis of an understanding system.

qIt should be emphasized that this system was primarily a "quick and

dirty" effort, intended as a device for testing and refining rules, rather

than as a program-writing system. One test of the rules is, of course,

adequacy, and the system has successfully written 3 substantially different

programs: a reverse program, a selection sort, and an insertion sort.

flI Although not all of the variations have been completed to date, we expect

that with perhaps 20 additional rules our system should be capable of

If generating a few dozen distinct (although in many cases similar) programs.

The programs produced are generally about 1 page in length (using the

INTERLISP prettyprint function as a standard of measurement).

We feel that this line of research has been fruitful and plan to

continue it in the future. It is our expectation that such a structuring

of knowledge will make possible the incremental addition of rules for

other aspects of low-level programs and that any additional rules will

use many of the present rules as subgoals.

I
I

T1



I BIBLIOGRAMh

I [i] "Automatic Composition of Functions from Modules", Project MAC
Progress Report X: July 1)72-July 1973, Section III.E.l,
Project MAC, Massachusetts Institutu of Technology, Cambridge,
Massachusetts, pages 151-156.

[21 Biermann, A. W., Baum, P., Krishnaswamy, R., and Petry, F. E.,3- -::IAutomatic Program Synthesis Reports, OSU-CISr-TR-73-6, Department
of Computer and Information Science, The Ohio State University,
Columbus, Ohio, October 1973.

1 [3] Biermann, A. W., and Feldman, J. A., "On the Synthesis of Finite-
state Machines from Samples of Their Behavior", IEEE Transactions
on Comuters, Volume C-21, Number (7, June 1972, pages 592-597I (also On the Synthesis of Finite-state Acceptors, Memo AIM-114,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanf'ord, C.!iifornia, April 1970).

I [41 Blum, L., and Blum, M.. "Inductive Tnference: A Recursion Theoretic
Approach", information and Control, to appear (also Memorandum
ERL-M586, Ele.ctronics Rcoearch Laboratory, College of Engineering,
University of California, Berkeley, California, 13 March 197).

[5] Bobrow, Daniel G., and Raphael, Bertram, "New Programming Languages
for AI Research", Computing Surveys, Vol'une 6, Number 5, September 1974
(invited tutorial lecture, Third International Joint Conference on
Artificial intelligence, Stanford University, Stanford, California,
20-23 August 1975; also Report CSL-7;-2, Xerox Palo Alto Research
Centfr, Palo Alto, California, 20 August 1973; also Technical Note 82,
Artificial intelligence Center, Stanford Research Institute, Menlo Park,

1 California, August 197").

[6] Dahl, O.-J., Dijkstra, F. W., and Hcoare, C. A. R., Structured
Programming, Academic Press, Inc., !I7-w Yor., New York, 1972.

[7] Feldman, J. A., and Shields, P. C., Total Complexity and the Inference
of Best Programs, Memo AIM-159, Report STAH-CS-72-253, Artificial
Intelligence Laboratory, Computer Science Departm,.nt, Stanford
University, Stanford, California, April 1972.

(81 Floyd, Robert W., "Algorithm 245: TREESORTl5", Cormunications of
the ACM, Volume 7, Number 12, December 19g(h, page 701.

[9] Floyd, Robert W., "Assi.-ning Meanings to Programs", in Schwartz, J. T.,
editor, Mathematical Aspects of Computer Sience, Proceedings of
Symposia in Applied Mathumatics, !clme ), American Mathematical
Society, Providence, Rhode Island, V017, pages 19-32.

[ [101 Floyd, Robert W., "Toward Interactive Design .of Correct Programs",
in Freiman, C'. 7., edil or. Foundati,,ns and Syst.ims, information
Processing 71: Proceedin. - of IFiP Congress 71, Volume 1,
Horth-Holland Publishing C-rmpany, Aiasterdam, The Netherlands,
1972, pages 7-10 (also Mr mo AL'.-15(, Report ST-AN-CS-71-235,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford Univrr~lty, Stanford, Caligornia, eptonber 1,971).

:5



I

[ il] Fusaoka, Akira, and W-ldijiger, Richard, "Prof;ramn h'ritlnc, usiiJ,
Sequences", Artificial .ntelligence Center, Stanford Rusearch

I Institute, Menlo Park, California, January 1974.

f12] Gold, E. Mark, "Language Identificaton in the Limit", Information
and Control, Volume 10, Number 5, May 1967, pages I4I7-474.

[13] Green, Claude Cordell, The A -ition of 'Theorem Proving to
Question--nzwering Systems, Ph.D. thesis, Electrical Engineering
Department, Memo AIM-96, Report STAN -CS-69-1,8, Artiicial
Intelligtnce L-iboratory, Computer Sc ience Departmnt, Stanford
University, Stanford, California, June 1969.

[14] Hardy, Steven, "Aotomatic Induction of LISP Functions", AISB Si:muner
Conference, 11niversity of Sussex, Brighton, England, July 1974,
pages 50-62

j [15] Hoare, C. A. R., "An Alzioatic Basis for Computer Progranuning",
Communictions of the ACM, Volume 12, Number 10, October 1969,
pages 576-580, 583.

I [16] Hoare, C. A. R., "Quicksort", The Computer Journal, Volume 5, 1962,
pages 10-15.

[17) Horning, Jinxes Jay, A Study of Gramnatical Inference, Ph.D. thesis,
Memo AIfl-98, Report STI-S-69-1;9, Artificial Intelligence l.boratory,
Computer Science Depnrtmwnt, Stanford University, Stanford, California,
August 1969-

[18] Hunt, Earl B., Concept Learning: An Infornration -ocessing, Problem,
John Wiley and Sons, Inc., New York, New York, 1962.

[19] Knuth, Donald E., The Art of Computer frogr:min1 ;, Vollmes 1-5,
Addison-Wesley Publishing Company, Inc., Rcadin!;., l-assachusetts, 1975,

1969, -1973.-
(20] Knuth, Donald E., Sortin and Searching, The Alt of Computer

Progr rming, Volume 5, Addison-Weslcy Pub1)sl ,ng Conixpny, Inc.,
Reading, I.-arsachusetts, 1973, page 73.

[21] yann" a, Z., "Aut.'watic r-,-, --e:*r ° , invited tut.-fial lectiure,

Third International Joint Confercnce on Art.ificial 1nte]ligonce,
Stanford University, Stanford, California, 20-25 Au,.st 197.

[I2] manna, Zohar, and Waldinger, Richard, "Knowledge and Reasoning in
FTogran Synthesis", in preparati-n.

(223] McCarthy, J., "Towards a athenz.tical Science of Ccmputa'tion", in
Pouplewell, Cicely M., editor, r-.e'siion . '
Proceedings of IFIP Contrs (2, : rth-1oll and Publishing .'..n

Amsterdam, The Netherlands, 19"'!, 4;ages 21-'8.

46



I

[241 Newell, Allen, "Heuristic Prograrru inkT: TiI-structured Problems",
in Aronofs~y, Julius S., editor, iielutionshi between Operations
Research and tile Computer, i-rogre.L in u',,tions Research, Volume ,

JohnL Wiley and Sons, Inc., New Yorl,, New Ycnrk, 1969, pages 361-1i.

[25] Persson, Staffa r, Some Sequence Et.r 2 poiating Proorams: A Study
of Representation and Modeling in inquiring 3ystems, Ph.D. thesis,
School of Business Ati inistration, Tni'rersity of California,
Berkeley, California, Memo AIM-l., 1 iu,,r ,TAIT-CS-66- 50, Artificial
Intelligence Laboratory, Computer Scien-e Department, Stanford
University, Stanford, California, 2( SepLexiber 196'.

[26] Reboh, Fene. and Sacerdoti, Earl, A Preliminary QLISP Manual,S26]Technical Note 81, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, August 1973.

[27] Rulifson, Johns F., Derksen, Jan A., and ',aldinger, Richard J.,
SqA4: A Procedural Calculus for Trt iUive Reasoning, Technical
Note 75, Artificial Intelligence Center, .Stanford Research
Institute, Menlo Park, California, November 1072.

[281 Simon, Herbert A., "Experiments with a Heristic Compiler",

Journal of the Association for Corm-.tinpr '--chiner , Volume 10,
Number 4, .ctober 1963, pages 493-506.

[29] Simon, Herbert A., and Kco' ky, Kenneth, "Human Acquisition of
Concepts for Sequential Pi-t.rns", Psychologiaal Review, Volume 70,
Number 6, November 1963, pages 554-56.

S[30] Smith, David Canfield, MEISP, Memo AIM-15, Report STAN-CS-70-179,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanford, California, October 1970.

[31] Teitelman, Warren, Il]TERLTSP Reference Manual., Xerox Palo Alto

Research Center, Palo Alto, California, 1974.

[52] Waldinger, Richard J., Constructing Programs Automatically using

Theorem Proving, Ph.D. th-zis, Comruter Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1969.

[35] Williams, J. W. J., "AL1:rthm 232: P..".RT', Connnications of
the ACM, Volume 7, Number ,, June ih, pa,.res 1;17-148.

(341 Winston, Patrick I., Learnin _y Structural Descriptions from Examples,
Ph.D. thesis, Department of 'lcctriua . TR-76, Project
MAC, TR-231, Artificial Intpl)i gence Tab-.-+'ty, Massachusetts
Institute of TechnoloL7jy cLbrid#, , 0ia~ca' i. ,-ts, September 1970.

A)17

i 7


